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Diffusion-limited reaction in one dimension: Paired and unpaired
nucleation
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We study the dynamics of diffusing particles in one space dimension with annihilation on collision
and nucleation~creation of particles! with constant probability per unit time and length. The cases
of nucleation of single particles and nucleation in pairs are considered. A new method of analysis
permits exact calculation of the steady-state density and its time evolution in terms of the three
parameters describing the microscopic dynamics: the nucleation rate, the initial separation of
nucleated pairs, and the diffusivity of a particle. For paired nucleation at sufficiently small initial
separation the nucleation rate is proportional to the square of the steady-state density. For unpaired
nucleation, and for paired nucleation at sufficiently large initial separation, the nucleation rate is
proportional to the cube of the steady-state density. ©2001 American Institute of Physics.
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I. INTRODUCTION

Reaction rates controlled by collisions between diffus
particles depend on the distribution of distances between
ticles as well as on the density of particles. In particular,
Noyes stated in 1961, ‘‘Any rigorous treatment of chemica
kinetics in solution must consider concentration gradie
that are established by the existence of the reaction itself.’’ 1

Here, we study the dynamics of point particles in one dim
sion, nucleated at random positions and times, then diffus
until colliding with and annihilating another particle. Com
petition between nucleation and annihilation produces a
tistically steady state with a well-defined mean density
particles and distribution of distances between particles.
shall contrast two types of nucleation:unpaired, in which
particles are deposited at random locations at random tim
andpaired, in which pairs of particles are deposited at ran
dom locations. The dynamics is as follows:

~i! Particles are nucleated in pairs with initial separat
b;

~ii ! Nucleation occurs at random times and positions w
rateG;

~iii ! Once born, all particles diffuse independently wi
diffusivity D; and

~iv! Particles annihilate on collision.
730021-9606/2001/115(1)/73/17/$18.00
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A portion of a typical realization of these dynamics
shown in Fig. 1. For unpaired nucleation~i! and ~ii ! are re-
placed by

~i8! Particles are nucleated at random times and positi
with rateQ.

An existing method of analysis, based on a trunca
hierarchy of correlation functions, is developed and exten
in this article to the case of paired nucleation, yielding e
pressions for the correlation functions in the steady state,
for the time scales for relaxation towards the steady st
We also introduce a different method of analysis that yie
an exactexplicit expression for the steady-state density a
for the time dependence of the density starting from arbitr
initial conditions. Our analytical predictions are compar
with the results of direct numerical simulations. In the sim
lations, large numbers of diffusing particles are simul
neously evolved in continuous space, with annihilati
whenever two paths cross and nucleation~paired or un-
paired! at random times and positions.

A striking difference between paired and unpaired nuc
ation is the scaling of the steady-state density of partic
r0 , with the nucleation rate:r0}G1/2 ~paired! vs r0}Q1/3

~unpaired!. Here, we shall exhibit the crossover betwe
these two cases in terms of the following dimensionle
quantity:
© 2001 American Institute of Physics
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«5S 2G

D D 1/3

b. ~1!

For «→`, the dynamics described by~i!–~iv! is equivalent
to that described by~i8!; ~iii !–~iv! with the replacement

Q→2G. ~2!

The paper is arranged as follows. In the remainder
this section we summarize published results for reactio
diffusion systems. In Sec. II we analyze the dynamics us
a hierarchy of equations for particle density functions, cal
‘‘reduced distribution functions’’ by van Kampen.2 Deriva-
tion of the reaction kernel leads to an exact relation betw
the density of particles and the derivative of the correlat
function. We also explore the linear response to a pertu
tion away from the steady state to establish the time sc
for relaxation. In Sec. III, by introducing a function that sa
isfies a closed linear partial differential equation, we pres
exact expressions for the steady-state density and for
time evolution of the density with arbitrary initial condition
In particular, analytical results are presented describing
rapid initial annihilation that transforms an initially rando
distribution into one characterized by an effective repuls
between particles.

A. Unpaired nucleation

Analysis of diffusion-limited reaction dates back to vo
Smoluchowski. HisMathematische Theorie der rasche
Koagulation3 considered reaction between diffusing partic
resulting in merger, with the reaction taken to occur imm
diately whenever two particles are a distanceR apart. He
introduced a diffusion equation for the density of partic
relative to the position of a test particle and noted that
density is zero at all times at radiusR.4 For many years it
was assumed that the final result of a complete calcula
following the procedure outlined by von Smoluchows
would be an equation for the mean density of particles,r, of
the form2

ṙ5Q2ksr
2, ~3!

whereQ is the rate~per unit length and time! of appearance
of new particles andks is constant. This would imply, for the
casewithout nucleation(Q50), that the density is propor

FIG. 1. One part of a numerical solution with paired nucleation, gover
by ~i!–~iv!. Time increases upwards and each dot indicates the space
position of a diffusing particle.G51.2531023, b52, D50.1.
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tional to t21 for t→`. However, arguments based on dime
sional analysis and scaling show that this is not true in o
dimension.5–9 In 1983, Torney and McConnell studied th
case and published an exact solution for the mean densit
a function of time.10 Starting from an initial random distri-
bution of particles, they found

r~ t !5r~0!exp~8Dtr2~0!!erfc~r~0!~8Dt !1/2!. ~4!

In particular,r→(8pDt)21/2 for t→`. A rederivation of
the result of Torney and McConnell was provided
Spouge,11 whose insight was that an annihilation process
equivalent to a coagulation process if coagulants made u
an even number of particles are considered as diffus
‘‘ghosts.’’ Derivations based on reflection principle12 and
field theory13,14 methods have also been published.

In discrete models of diffusion-limited reaction, diffu
sion is approximated by hopping between neighboring s
on a lattice. Here, too, the density of particles without nuc
ation is proportional tot21/2 for t→`.14–18 Moreover, with
unpaired nucleation, the steady-state density is proportio
to the third power of the nucleation rate.19–21 This can be
interpreted as evidence for a time-dependent rate constaks

in ~3!, or as requiring~3! to be replaced by an equation of th
form

ṙ5Q2kcr
3. ~5!

However, no polynomial equation for the density can d
scribe both the steady state with nucleation and the long-t
decay of the density without nucleation.20,22

An exact solution has been found in one dimension fo
discrete coagulation model with one fixed source. The la
solution is related to the probability that a given spin in
Ising chain with random initial conditions does not chan
its value before timet.23 For discrete and continuous coag
lation models, exact results are available not only for
density but also for the spectrum of relaxation rates,20 the
distribution of interparticle distances,20 and correlation
functions.24 They are obtained by considering the functio
E(nDx,t), defined as the probability that an arbitrarily ch
sen segment ofn consecutive sites contains no particles, s
isfying a closed kinetic equation. It has, however, not prov
possible to extend this method to the case of annihilation
contact, because the functionE(nDx,t) does not satisfy a
closed equation.21

B. Paired nucleation

The ‘‘coefficient of recombination’’ of two particles ini-
tially close together was introduced in the study of subatom
particles.25 The relative motion of two diffusing particles i
equivalent to a problem of Brownian motion of on
particle.26,27

A discrete model that corresponds to paired nucleatio
the Ising model, with nucleation at neighboring sites. Its d
namics was studied analytically by Glauber in 1963;28 the
nucleation rate is proportional to the square of the stea
state density for nucleation rates sufficiently small that
cluded volume effects can be neglected.19 Computer simula-
tions of a discretized reaction–diffusion modelA1B→0,
published in 1987,29 contrasted the scalings of the stead
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state density according to whether nucleation occurred
random sites or in pairs at neighboring sites. In the la
case, the scalingG}r2 was found.

A different approach to diffusion-limited reaction wa
recently introduced in the context of kink dynamics in
stochastic partial differential equation~PDE!.30 There, the
dynamics was termed ‘‘mesoscopic’’ because it was an
proximate model that ignored the internal structure of kin
and antikinks, treating them simply as particles that hap
to be nucleated in pairs. The treatment was based on cl
fying particles according to whether they are annihilated i
collision with their nucleation partner~recombination! or
with a different particle~nonrecombinant annihilation!. The
steady state-densityr0 is related to the mean lifetime of
particle,t, by

r052Gt. ~6!

The mean lifetimet was estimated directly by averagin
over the possible histories of a pair of particles born togeth
This approximate analysis yielded the estimater0

5(3bG/8D)1/2.

II. HIERARCHY OF DISTRIBUTION FUNCTIONS

Let f n(x1 , . . . ,xn ;t)dx1 ...dxn be the probability that
there is one particle in (x1 ,x11dx1), one in (x2 ,x21dx2),
. . . , and one in (xn ,xn1dxn) at time t, regardless of the
positions of the other particles.2 The functionf 1(x1 ;t) is the
particle density atx1 at time t. On deriving the differential
equation for its time derivative, one finds that it involv
f 2(x1 ,x2 ;t).2,4,22,31 Similarly, the time derivative of
f 2(x1 ,x2 ;t) involves f 3(x1 ,x2 ,x3 ;t). One is thus led to a
hierarchy of differential equations for the evolution of th
distribution functions.

In this section we derive the source terms appropriate
paired nucleation in the hierarchy of differential equatio
We also derive the reaction terms corresponding to diffus
with annihilation on collision, without needing to introduce
reaction radius. Three parameters remain in the theory
paired nucleation: the nucleation rate of pairsG, their sepa-
ration at nucleationb, and the diffusivity of a particleD. For
unpaired nucleation there are two parameters: the nuclea
rate Q and the diffusivity of a particleD. The annihilation
process is immediate on collision and therefore does no
quire extra parameters. It manifests itself instead in bound
conditions on the distribution functions. We shall trunca
the hierarchy of distribution functions using an ansatz for
three-point correlation function, introduced in the literatu
for unpaired nucleation,22,31 thus obtaining a closed pair o
differential equations for the density and two-point corre
tion function. Their solution yields analytical approximatio
for the steady-state density and two-point correlation fu
tion. By examining perturbations away from the steady st
we derive the time scales for relaxation towards the ste
state.

The evolution of the reduced distribution functions ha
number of contributions
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]

]t
f n~x1 , . . .,xn ;t !

5D¹2f n~x1 , . . .,xn ;t !2(
( i j )

n

k~xi ,xj ! f n~x1 , . . .,xn ;t !

2(
i 51

n E
2L

L

dxn11k~xi ,xn11! f n11~x1 , . . .,xn ,xn11 ;t !

1sources. ~7!

First on the right is the diffusion term, due to the motion
each particle with diffusion coefficientD. The second term
represents the reaction between two of then particles:
k(x,x8) is the probability per unit time that a particle atx
and one atx8 react, and the summation is over all pairs th
can be selected from then particles. The third term account
for the fact that each of then particles may react with an
other that is not part of the set ofn particles, and 2L is the
size of the system. The last term is a source contribut
whose form is given in detail below. Equation~7! is one in
an infinite hierarchy. Explicitly, the first two equations in th
hierarchy are:

]

]t
f 1~x1 ;t !5D

]2

]x1
2 f 1~x1 ;t !2E

2L

L

dx8k~x1 ,x8! f 2~x1 ,x8;t !

1q1~x1!, ~8!

]

]t
f 2~x1 ,x2 ;t !5D¹2f 2~x1 ,x2 ;t !2k~x1 ,x2! f 2~x1 ,x2 ;t !

2E
2L

L

dx8@k~x1 ,x8!1k~x2 ,x8!#

3 f 3~x1 ,x2 ,x8;t !1q2~x1 ,x2!

1 f 1~x1 ;t !q1~x2!1 f 1~x2 ;t !q1~x1!. ~9!

A. Source terms for paired nucleation

The termq1(x1) in ~8! and~9! is the probability density
per unit time for the creation of a particle atx1 ; the term
q2(x1 ,x2) is the probability density per unit time for th
simultaneous creation of a particle atx1 and another atx2 .
When creation of particles always occurs in pairs, these
source functions are related

q1~x1!5E
2L

L

dx2 q2~x1 ,x2!. ~10!

When the particle creation rates are independent of posi
and time,q1(x) is constant

q1~x!52G, ~11!

and q2(x,x1y) is independent ofx. The constantG is the
rate of creation of pairs per unit length.

Here, because particles are indistinguishable,q2(x1 ,x2)
depends only on y5ux12x2u and the functions
f n(x1 ,...,xi ,...,xn ;t) are independent of the order of thexi .
The probability that two particles initially atx1 andx2 react
is the probability that they diffuse and collide. Since partic
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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diffusion is isotropic and independent of position,k(x1 ,x2)
also depends only ony5ux12x2u. We therefore define

q~y![q2~x1 ,x2! and K~y![k~x1 ,x2!. ~12!

The functionq(y) describes the probability density of dis
tances between particles nucleated simultaneously. We
use the following forms for this function, corresponding
unpaired nucleation and to paired nucleation with init
separationb:

q~y!5H G/L unpaired;

Gd~y2b! paired.
~13!

We can now rewrite~8! and ~9! as follows:

]

]t
f 1~x;t !5D

]2

]x2 f 1~x;t !22E
0

L

dy K~y! f 2~x,x1y;t !12G,

~14!

]

]t
f 2~x,x1y;t !5D¹2f 2~x,x1y;t !2K~y! f 2~x,x1y;t !

2E
2L

L

dz~K~ uzu!1K~ uz2yu!!

3 f 3~x,x1y,x1z;t !

1q~y!12G~ f 1~x;t !1 f 1~x1y;t !!. ~15!

If the initial conditions are homogeneous, then the fun
tions f 1 , f 2 ,..., will be homogeneous at all times. In pa
ticular, f 1(x;t) will be independent ofx at everyt. Let

r~ t ![ f 1~x;t !,
~16!

Fn~x2 ,...,xn ;t ![r2n~ t ! f n~x,x22x,...,xn2x;t !.

We shall in particular be interested in the dimensionless c
relation function defined by

g~y,t ![F2~y;t !. ~17!

The functiong(y,t) is the probability density at timet of
particles at a distancey from a reference particle, divided b
the overall density of particles. It is constructed numerica
as follows. Choose a sample ofN reference particles, locate
at $xi ,i 51,...,N% at time t. For eachxi , construct

Gi~y,t !5$number of particles betweenxi and xi1y%

for y.0. Then,G(y,t) is the average over theN particles of
the Gi(y,t) and

g~y,t !5~r~ t !!21
]

]y
G~y,t !. ~18!

If there is no correlation between particles at timet, then
g(y,t)51 for all y>0. In all the situations considered her
the total length 2L of the system is sufficently large com
pared to the correlation length so that

lim
y→`

g0~y!51, ~19!

whereg0(y) denotes the steady-state correlation function
In terms of r(t) and g(y,t), Eqs. ~14! and ~15! now

simplify to the pair of equations
Downloaded 26 Jun 2001 to 129.11.159.162. Redistribution subject to A
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ṙ~ t !522r2~ t !E
0

L

dy K~y!g~y,t !12G, ~20!

]

]t
g~y,t !52D

]2

]y2 g~y,t !2K~y!g~y,t !2r~ t !E
2L

L

dz~K~ uzu!

1K~ uz2yu!!F3~y,z;t !14Gr21~ t !

1r22~ t !q~y!22r21~ t !g~y,t !ṙ~ t !. ~21!

B. The reaction kernel

To complete the description of the dynamics of the s
tem, we consider the reaction terms for the case wherepar-
ticles diffuse with diffusivity D and annihilate on collision.
We shall see that a consequence of annihilation on collis
is that g(0)50 for all t.0, whereg(y) is the correlation
function defined in~17!. We derive an exact relation betwee
g8(0) and the rate of collisions between particles.

Let s(y,Dt) be the probability that two particles, with
initial separationy, collide beforeDt. Then, the reaction
kernelK(y), defined in~12!, is given by

K~y!5 lim
Dt→0

1

Dt
s~y,Dt !. ~22!

If both particles diffuse with diffusivityD, then27,32

s~y,Dt !5erfcS y

~8DDt !1/2D , ~23!

where we assumeL@(DDt)1/2. To calculate the frequency
of collisions between particles, we consider a time inter
t,t1Dt. Given the densityr(t) and the correlation function
g(y,t) defined in~17!, we can imagine following the path
of all the particles from timet to time t1Dt without remov-
ing those that collide. Then, the probability that a partic
chosen at random undergoes a collision between timet and
time t1Dt is P(t,Dt), where

P~ t,Dt !52r~ t !E
0

L

dy s~y,Dt !g~y,t !. ~24!

The expression~24! overestimates the number of collision
in the system with annihilation on collision due to the po
sibility that the same particle undergoes two~or more! colli-
sions in the intervalt,t1Dt. However, this latter probability
is proportional to (Dt)2 as Dt→0, and so~24! is valid for
our system in the limitDt→0.

Next, consider the dynamics of the system as a wh
The mean number of distinct collisions between timet and
time t1Dt is given by Lr(t)P(t,Dt). We can, therefore,
write
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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E
0

L

dy s~y,Dt !g~y,t !

5E
0

L

dy s~y,Dt !~g~0,t !1yg8~01,t !

1 1
2 y2g9~01,t !1¯ !

5S 1

Ap
~8DDt !1/2g~0,t !1 1

4 ~8DDt !g8~01,t !

1O~DDt !3/2D . ~25!

The number of collisions between timet and t1Dt is pro-
portional toDt if

g~0,t !50. ~26!

Because the number of nucleation events between timet and
time t1Dt is proportional to 2LDt, the condition~26! is
necessary if there is to be a steady-state balance betw
nucleation and annihilation. More generally, it is necessar
r(t) is to obey a differential equation. It is, of course, po
sible to construct initial conditions that do not satisfy~26!: a
random distribution of particles, for example. Then, the nu
ber of annihilation events will initially be proportional t
t1/2; this period of rapid annihilation creates a ‘‘depletio
zone’’ 1,20,33,34in g(y,t), which thereafter satisfies~26!. That
g(y,t),1 for y→0 implies an effective repulsion: particle
arelesslikely to be found close to a reference particle than
large distance from it.

Using ~25! and~26! gives exact expressions for the ev
lution of the density:

ṙ~ t !524Dr2~ t !g8~01,t !12G, paired;
~27!

ṙ~ t !524Dr2~ t !g8~01,t !1Q, unpaired.

In particular, we have the following relationship between t
steady-state density and the derivative of the correla
function. Let r0 and g0(y) denote the steady-state dens
and correlation function. Then

G52Dr0
2g08~01! paired;

~28!
Q54Dr0

2g08~01! unpaired.

The reaction kernelK(y) is a singular function

E
0

L

dy K~y!g~y,t !5 lim
Dt→0

1

Dt E0

L

dy s~y,Dt !g~y,t !

52Dg8~01,t !. ~29!

We have assumed that~26! holds. The derivative ofg(y) is
one-sided

g8~01,t ![ lim
a→01

g~a,t !

a
, ~30!

becauseg(y) is only defined fory.0. In other words

K~y!52D lim
a→01

d~y2a!

a
. ~31!
Downloaded 26 Jun 2001 to 129.11.159.162. Redistribution subject to A
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It is interesting to compare~31! with the form ofK(y) used,
for example, by Lindenberget al.31

K~y!5kd~y2a!, ~32!

which introduced a reaction radiusa and a rate coefficientk.
There, it was assumed that these constants are connect
the diffusivity via the Smoluchowski relationk52D/a and
that in the limita→0, k→` their product remains finite. In
the form used here, by contrast, we are able to explicitly t
the limit of zero reaction radius:a→0.

Similarly to ~29!

E
2L

L

dz K~ uzu!F3~y,z;t !54DF38~y,01;t !, ~33!

where

F38~y,01;t !5 lim
a→01

a21F3~y,a;t !, ~34!

and

E
2L

L

dz K~ uz2yu!F3~y,z;t !54DF38~y,y1;t !. ~35!

A similar expression was derived for a discrete coagulat
model without nucleation by Lin, Doering, an
ben-Avraham.22 SinceF3(y,0;t)5F3(y,y;t), Eqs.~20! and
~21! simplify to the pair of equations

ṙ~ t !524Dr2~ t !g8~01,t !12G, ~36!

]

]t
g~y,t !52D

]2

]y2 g~y,t !2K~y!g~y,t !

28Dr~ t !F38~y,01;t !14Gr21~ t !

1r22~ t !q~y!22r21~ t !g~y,t !ṙ~ t !. ~37!

Annihilation on collision is described by the terms involvin
the reaction kernelK(y).

C. Truncation of the hierarchy

We have obtained exact expressions for the evolution
the density. However, to obtain a closed set of equations,
truncate the hierarchy of distribution functions via an a
proximation. Various methods have been used to break h
archies resulting from reaction–diffusion systems.2,22,31 We
shall restrict ourselves to the simplest. In the hierarchy t
begins with~36! and ~37! we make the ansatz

F38~y,01;t !5g~y,t !g8~01,t !. ~38!

This choice, which would be exact if successive interparti
spacings were independent,35 is not per sethe most compel-
ling, but it has been shown to produce excellent resu
~when compared with simulations! for batch reactions and in
the steady state with unpaired nucleation.31,35 In Sec. III we
shall compare the steady-state density obtained with this
sure to the exact result.

With the approximation ~38! we find
24Dr2(t)F38(y,01)5g(y,t)( ṙ(t)22G), and so ~36! and
~37! reduce to the following closed set of equations, linear
g(y,t):
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ṙ~ t !524Dr2~ t !g8~01,t !12G, ~39!

]

]t
g~y,t !52D

]2

]y2 g~y,t !22K~y!g~y,t !

1
4G

r~ t !
~12g~y,t !!1

q~y!

r2~ t !
, ~40!

plus the condition~26!. In the case of paired nucleation
q(y)5Gd(y2b). In the case of unpaired nucleation in th
~thermodynamic! limit, L@r(t)21, ~40! reduces to

]

]t
g~y,t !52D

]2

]y2 g~y,t !22K~y!g~y,t !

1
2Q

r~ t !
~12g~y,t !!, ~41!

with, as before,Q[2G. Note that no further simplifications
can be obtained by assuming low density. In particular, a
density expansion cannot be used to justify the trunca
~38!.

D. Steady states

The density and correlation function in the steady sta
r0 andg0(y), are found by setting to zero the time deriv
tives on the left-hand side of~39! and of~40! or ~41!. There
thus results a second-order equation forg0(y), with the two
relations~26! and ~28!.

For unpaired nucleationone finds31

r0
tu5S Q

16D D 1/3

, ~42!

g0
tu~y!512e22(Q/2D)1/3y, ~43!

where we have introduced the superscript ‘‘t’’ to indica
that the result is obtained from the truncation~38! and ‘‘u’’
to denote ‘‘unpaired nucleation.’’ In Fig. 2 we compare n
merical results for the correlation function with~43!.

For paired nucleationthe steady-state equation for th
correlation function is

FIG. 2. Correlation function for unpaired nucleation. Numerical results
compared with the formula~43! obtained by truncating the hierarchy~solid
line!. Q51.0 andD50.5.
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052D
]2

]y2 g0~y!22K~y!g0~y!

14
G

r0
@12g0~y!#1

G

r0
2 d~y2b!. ~44!

The solution of~44! is derived in Appendix A. Whenb is
sufficiently large the results are equivalent to~43! with ~42!.
Of interest here is the opposite situation:«→0, with e de-
fined in Eq.~1!. The separationb in the latter case is much
smaller than the length scale defined by the inverse den
and the steady-state density is given by

r0
tp5S Gb

2D D 1/2

. ~45!

The correlation function in the same limit is

g0
tp~y!5H y

b
0<y,b;

1 y>b.

~46!

Corrections to~46! are proportional to«3/4. In Fig. 3 this
correlation function is compared with numerical results.

E. Relaxation to the steady state

In order to study the relaxation to the steady state,
decompose the functionsr(t) andg(y,t) as follows:

r~ t !5r01dr~ t !, ~47!

g~y,t !5g0~y!1dg~y,t !, ~48!

with r0 and g0(y) the steady-state density and the stea
state correlation function, respectively. This decomposit
is valid for both unpaired and paired nucleation. Assum
that we are close to the steady state, we can obtain linear
equations for the deviationsdr and dg from their steady-
state values. For paired nucleation

]

]t
dr~ t !524Dr0

2dg8~01,t !28Dr0g08~01!dr~ t !,

~49!

eFIG. 3. Correlation function for paired nucleation. Numerical results
shown as dots and the approximation~46! as a solid line.b50.05, G
564.0, andD52.0.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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]

]t
dg~y,t !52D

]2

]y2 dg~y,t !22K~y!dg~y,t !

2
4G

r0
Fdg~y,t !1

12g0~y!

r0
dr~ t !G

2
2G

r0
3 d~y2b!dr~ t !. ~50!

For unpaired nucleation the last term in~50! is absent.
Formal solution of these coupled linear equations is p

sented in Appendix B. Explicit solution forall times is in
fact possible for the unpaired nucleation case~and presented
in the Appendix!. Ultimately we are interested in the
asymptotic relaxation behavior. If the relaxation proces
each involve a single exponential decay

dr~ t ! →
t→`

Ae2at, ~51!

dg8~01,t ! →
t→`

Be2bt, ~52!

then the density and correlation function decay on the sa
time scale, i.e.,b5a. For unpaired nucleation we find from
the exact result~B22! that the asymptotic decay is indee
exponential, with

au5~51A5!~DG2!1/357.236 . . .~DG2!1/3

5
~51A5!

41/3 ~DQ2!1/354.558 . . . ~DQ2!1/3. ~53!

In the case of paired nucleation, if we assume expon
tial decay we find for the inverse time scale

ap5S 32DG

b D 1/2

. ~54!

However, on the basis of the exact results reported be
~and also in parallel work36! there is reason to suspect th
the decay may not be purely exponential in the paired nu
ation case.

III. EXACT RESULTS

In this section we derive exact expressions for the d
sity of particles, using a function that obeys a linear par
differential equation. The function is similar in interpretatio
to the pair–pair correlation function in the Ising model28

The methodology is also similar to that used to obtain ex
results for models of diffusion-limited coagulation.20 Here,
we obtain explicit exact expressions for the density of p
ticles, in steady state and nonsteady state, for paired
unpaired nucleation. Previous exact results for diffusio
limited reaction with annihilation have been limited to th
case of no nucleation.36

Let the functionr (x,t) be defined as follows:

r ~x,t !5$probability that the number of particles

between 0 andx at time t is even%. ~55!

Note that, by translational invariance, we can replace
interval (0,x) by (X,X1x) for any X. The value ofr (x,t)
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changes due to diffusion of particles in or out of of the r
gion (0,x), and due to nucleation of a single particle in th
region.

In Appendix C we derive equations for the space a
time derivatives ofr (x,t). At any timet the densityr(t) is
given by

r~ t !52
]

]x
r ~x,t !ux501. ~56!

To describe the time evolution ofr (x,t), we distinguish be-
tween the cases of unpaired and paired nucleation using
superscripts u and p.

In the case ofunpaired nucleation, r u(x,t) satisfies

]

]t
r u~x,t !52D

]2

]x2 r u~x,t !2xQru~x,t !1xQ~12r u~x,t !!

52D
]2

]x2 r u~x,t !1xQ~122r u~x,t !!, ~57!

with the boundary conditions

r u~0,t !51 and lim
x→`

r u~x,t !5 1
2 , t.0. ~58!

In the case ofpaired nucleation, r p(x,t) satisfies

]

]t
r p~x,t !5H 2D

]2

]x2 r p~x,t !12xG~122r p~x,t !! x<b;

2D
]2

]x2 r p~x,t !12bG~122r p~x,t !! x.b,

~59!

with the boundary conditions

r p~0,t !51 and lim
x→`

r p~x,t !5 1
2 , t.0. ~60!

A. Steady state: Unpaired nucleation

The steady-state solution of~57! will be denoted by
r 0

u(x). It satisfies

2D
]2

]x2 r 0
u~x!1xQ~122r 0

u~x!!50. ~61!

The solution is19,35

FIG. 4. The functionr 0
u(x): numerical and exact results for unpaired nucl

ation. The solid line is Eq.~62!. Q51.0, andD50.5.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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r 0
u~x!5

1

2 S 11
Ai ~~Q/D !1/3x!

Ai ~0! D ~62!

and is shown in Fig. 4. Thus, the exact steady-state den
for unpaired nucleation is

r0
u52

]

]x
r 0

u~x!ux501

5
1

2 S Q

D D 1/3uAi 8~0!u
Ai ~0!

5S Q

16D D 1/3

0.9186... . ~63!

Note that the exact result for the steady-state density
0.9186 of the density~42! predicted from the truncated hie
archy. For comparison, in a discrete model with nucleat
rate R, where collision of particles produces coagulati
rather than annihilation, the steady-state density is gi
by20,22

r0
u5

1

2 S R

2D D 1/3uAi 8~0!u
Ai ~0!

~coagulation!. ~64!

B. Steady state: Paired nucleation

The steady-state solution of~59! is

r 0
p~x!

5H 1

2 Fc1Ai S S 2G

D D 1/3

xD1c2BiS S 2G

D D 1/3

xD11G x<b;

1

2 Fc3 expS 2S 2Gb

D D 1/2

xD11G x.b

~65!

and is shown in Fig. 5. We have used the second of
boundary conditions~60! to rule out increasing exponentia
solutions forx.b. The constantsc1 , c2, andc3 are fixed by
requiring r 0

p(0)50 and imposing continuity ofr 0
p(x) and

(d/dx)r 0
p(x) at x5b.

The densityr(t) is given by~56!. In the steady state

r0
p52

d

dx
r 0

p~x!U
x501

5
1

2 S 2G

D D 1/3

~c1Ai 8~0!1c2Bi8~0!!

5S G

4D D 1/3uAi 8~0!u
Ai ~0!

3S Bi8~«!1A3Ai8~«!1«~Bi~«!1A3Ai~«!!

Bi8~«!2A3Ai8~«!1«~Bi~«!2A3Ai~«!! D , ~66!

in terms of the dimensionless quantity« defined in Eq.~1!.
The function~66! is plotted in Fig. 6.

In the limit «→0, Bi(«)→A3Ai(«) and Bi8(«)
→2A3Ai8(«), so

r0
p5S G

4D D 1/3S «1/22
1

2
«21¯ D5S bG

2D D 1/2

~11O~«3/2!!.

~67!

For «→`
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r0
p→ 1

2 S 2G

D D 1/3uAi 8~0!u
Ai ~0!

, ~68!

and we regain the result~63!.

C. Time-dependent statistics: Unpaired nucleation

Let us introduce

hu~x,t !5r u~x,t !2r 0
u~x!. ~69!

Then,hu(x,t) satisfies

]

]t
hu~x,t !52D

]2

]x2 hu~x,t !22Qx hu~x,t !, ~70!

with the boundary conditions

hu~0,t !50 and lim
x→`

hu~x,t !50, ~71!

for all t. We can expand the general solution as follows:

hu~x,t !5(
i 51

`

ci hi
u~x!e2l i t, ~72!

where the eigenfunctionshi
u(x) satisfy

d2

dx2 hi
u~x!2

Q

D
x hi

u~x!52l ihi
u~x!, ~73!

with the boundary conditions

FIG. 5. The functionr 0
p(x), measured at late times in a numerical simu

tion with paired nucleation~dots!. The solid line isr 0
p(x) as given in Eq.

~65!. b50.2, G50.25, andD50.5.

FIG. 6. Exact steady-state density vs the dimensionless parameter«.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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hi
u~0!50 and lim

x→`

hi
u~x!50. ~74!

The eigenfunctionshi
u(x) are thus given by

hi
u~x!5Ni Ai S S Q

D D 1/3S x2
l i

2QD D . ~75!

The eigenfunctions are normalized by choosing

Ni
225E

0

`

dx Ai2S S Q

D D 1/3S x2
l i

2QD D5S D

QD 1/3E
ai

`

dz Ai2~z!.

~76!

The eigenvaluesl i are related to the zeros of the Airy func
tion ~all on the negative real axis!

l i52~8DQ2!1/3ai , ~77!

whereai is the i th zero counting away from 0. Relaxatio
towards the steady state is determined for late times by
smallest eigenvalue
cle
e,
lcu
th

Downloaded 26 Jun 2001 to 129.11.159.162. Redistribution subject to A
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l152~8DQ2!1/3a1 . ~78!

An explicit analytical solution for the density as a fun
tion of time is obtained once the constantsci are determined
from the initial conditionr u(x,0)

ci5E
0

`

dx hi
u~x!~r u~x,0!2r 0

u~x!!. ~79!

Thus,

hu~x,t !

5(
i 51

` E
0

`

dz Ai ~z1ai !F r S zS D

QD 1/3

,0D2
1

2 S 11
Ai ~z!

Ai ~0! D G
*ai

` dz Ai2~z!

3Ai S S Q

D D 1/3S x2
l i

2QD De2l i t, ~80!

and
r~ t !5r0
u2

]

]x
hu~x,t !ux501 ~81!

5r0
u2

1

2 S Q

D D 1/3

(
i 51

` E
0

`

dz Ai ~z1ai !F r uS zS D

QD 1/3

,0D2
1

2 S 11
Ai ~z!

Ai ~0! D G
*ai

` dz Ai2~z!
Ai 8~ai !e

2l i t. ~82!
ri-

ue

un-
1. Zero initial density

If r(0)50, thenr u(x,0)51 for all x.0 and

ci5
1

2
Ni S D

QD 1/3E
0

`

dz Ai ~z1ai !S 12
Ai ~z!

Ai ~0! D . ~83!

Thus,

FIG. 7. Time evolution starting with no particles present. Unpaired nu
ation with Q516, D51. Solid circles are numerical results. The solid lin
almost invisible under the numerical results, is the exact evolution ca
lated from Eq.~85!. The upper dotted line is the exact steady state and
lower dotted line is the first term in the sum~85!.
r~ t !5r0
u2

]

]x
hu~x,t !ux501 ~84!

5r0
u2

1

2 S Q

D D 1/3

3(
i 51

` E
0

`

dz Ai ~z2ai !S 12
Ai ~z!

Ai ~0! D
*ai

` dz Ai2~z!
Ai 8~ai !e

2l i t.

~85!

In Fig. 7, the exact time evolution is compared with nume
cal results, obtained withL533106. The lower dotted line
is obtained by plotting only the first term of the sum in~85!,
using the values from Table I. Explicitly, the first eigenval

-

-
e

TABLE I. Quantities related to the eigenvalues and eigenfunctions for
paired nucleation.

i ai Ai 8(ai) *ai

` dz Ai2(z)
E

0

`

dz Ai ~z2ai !S 12
Ai ~z!

Ai ~0! D
1 22.338 0.701 0.492 0.972
2 24.088 20.803 0.645 1.002
3 25.520 0.865 0.749 0.996
4 26.786 20.911 0.829 1.001
5 27.944 0.947 0.897 1.012
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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that determines the long-time approach to the steady sta

l154.676 . . . ~DQ2!1/357.4227 . . . ~DG2!1/3. ~86!

2. Random initial density

An interesting case is provided by starting the syst
with the exact steady-state densityr(0)5r0

u , but with a ran-
dom initial distribution of particles. There is an initial perio
of rapid annihilation that reduces the density, followed by
slower relaxation back to the steady-state value.

For a random initial distribution of particles with densi
r, the number of particles in (0,x) is a Poisson random vari
able with meanrx. The functionr u(x,0) can be calculated a
follows:

r u~x,0!5P@0 particles between 0 andx#

1P@2 particles between 0 andx#1¯

5e2rx1e2rx
~rx!2

2!
1...5

1

2
~11e22rx!. ~87!

Figure 8 shows data from a numerical simulation, perform
with L523105, along with the results of the calculation o
the coefficients in~82!, using~87!.

D. Time-dependent statistics: Paired nucleation

Let us introduce

hp~x,t !5r p~x,t !2r 0
p~x!. ~88!

Then,hp(x,t) satisfies

]

]t
hp~x,t !5L hp~x,t !, ~89!

where the operatorL is defined by

L f ~x!5H 2D
d2

dx2 f ~x!24xG f ~x! x<b;

2D
d2

dx2 f ~x!24bG f ~x! x.b.

~90!

The boundary conditions onhp(x,t) are

FIG. 8. Time evolution starting from a random distribution of particles w
the exact steady-state density. Unpaired nucleation withQ516, D51. Solid
circles are numerical results. The solid line is the exact evolution, the u
dotted line is the exact steady state, and the lower dotted line is the
slowly decaying term in the sum~82! with initial conditions~87!.
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hp~0,t !50 and hp~x,t ! bounded asx→`, ~91!

for t.0.
Let us introduce

a i5
l i

4bG
. ~92!

For a i.1, the eigenvalue equation

Lhi
p~x!52l ihi

p~x!, ~93!

has a continuous spectrum of solutions

hi
p~x!5

¦

c1~a i !F A3 AiS «S x

b
2a i D D2BiS «S x

b
2a i D D G

x<b;

c2~a i !sinF ~a i21!1/2S 2Gb

D D 1/2

~x2b!G
1c3~a i !cosF ~a i21!1/2S 2Gb

D D 1/2

~x2b!G
x.b.

~94!

When« is sufficiently large, there are also discrete eigenv
ues at values ofa i,1 satisfying

Ai ~2«a i !Bi8~«~12a i !!2Bi~2«a i !Ai 8~«~12a i !!

1~«~12a i !!1/2~Ai ~2«a i !Bi~«~12a i !!

2Bi~2«a i !Ai ~«~12a i !!!50. ~95!

The eigenfunctions in this case are

hi
p~x!55

c1~a i !F A3 AiS «S x

b
2a i D D2BiS «S x

b
2a i D D G

x<b;

c4~a i !expF2S 2Gb

D D 1/2

~12a i !
1/2xG x.b.

~96!

Thus, for all finite«, there is a continuous spectrum o
eigenvalues withl i>4bG. For « smaller than«c these are
the only eigenvalues. The critical value«c satisfies

Ai ~2«c!Bi8~0!2Bi~2«c!Ai 8~0!50, ~97!

so

«c51.98... . ~98!

Discrete eigenvalues appear for larger values of« ~Fig. 9!.
The unpaired limit is regained as«→`, when2«a i→ai ,
so thatl i→2.338(32DG2)1/3.

In Figs. 10 and 11 we compare the exact expressions
the steady-state density and exponents characterizing re
ation toward the steady-state density with numerical resu
In each case the curved dotted line is obtained using
lowest exponent available, but the coefficient is obtain
from a best fit. In the case depicted in Fig. 10, there is
discrete eigenvaluel i,4bG; in the case depicted in Fig. 11
there is only the continuum of eigenvaluesl i>4bG, and the
relaxation process may not be purely exponential.
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E. Time-dependent statistics: No nucleation

In the absence of nucleation,r n(x,t) satisfies the hea
equation

]

]t
r n~x,t !52D

]2

]x2 r n~x,t !, ~99!

with the boundary conditions

r n~0,t !51 and lim
x→`

r n~x,t !5 1
2 , ~100!

for all t.0. The solution of~99! is given by37

r n~x,t !511~8pDt !2 1/2S E
0

`

dy ~12r n~y,0!!e2(x2y)2/8Dt

1E
2`

0

dy ~r n~2y,0!21!e2(x2y)2/8DtD . ~101!

If the initial distribution of particles is random with den
sity r(0), then

r n~x,0!5 1
2 ~12e22r(0)x!. ~102!

Now, using~56!, we derive the density of particles as a fun
tion of time for random initial conditions

r~ t !52~8pDt !2 1/2S E
0

`

dy e22r(0)t
y

8Dt
e2y2/8Dt

1E
2`

0

dy e2r(0)t
y

8Dt
e2y2/8DtD

52r~0!~8pDt !2 1/2E
0

`

dy e22r(0)ye2y2/8Dt

5r~0!exp~8Dtr2~0!!erfc~r~0!~8Dt !1/2!. ~103!

We thus reproduce the result~4! of Torney and McConnell.10

IV. DISCUSSION

In the case of unpaired nucleation, there is only o
length scale, proportional to (D/Q)1/3, and only one time
scale, proportional to (DQ2)21/3. The relaxation time to
equilibrium and the mean lifetime of a particle are prop
tional to one another. This is made clear in the mesosco

FIG. 9. Eigenvalues for paired nucleation. All valuesl>4bG are permitted.
Discrete valuesl i,4bG are also found for sufficiently large«. The dotted
line is l52a14bG/«.
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approach,30 although in the approaches detailed here we
not make this explicit distinction. It is noteworthy that th
reaction–diffusion approach yields a steady state tha
within 9% of the correct one and a relaxation rate that diff
from the exact result by only 2.3%.

Although the case of paired nucleation is more comp
cated in terms of the time scales associated with its dyn
ics, its steady-state distribution of particles is closer to
classical equilibrium random distribution than the corr
sponding distribution produced by unpaired nucleation. N
that the truncated hierarchy approach in this case leads to
exact steady-state density. The underlying reason is tha
dynamics produced by paired nucleation is close to tim
reversal invariant. For comparison, an ensemble of nonin
acting diffusing particles has a two-point functiong(y) iden-
tically equal to 1.38 We can imagine producing a space-tim
diagram such as shown in Fig. 1 from a diagram associa
with noninteracting particles in two steps. First, when tw
particles collide, move them to a different, randomly chos
part of the system. Second, separate them by a distancb.

FIG. 10. Density of particles vs time for paired nucleation starting from z
density. The parameters areG516, D50.5, b51 («54). The solid circles
are numerical simulation results and the upper dotted line is the exact st
state. The lower dotted curve isr0(121.6 exp(22.34bGt)). Note that the
latter exponent is the lowest for«54 and is a discrete value below th
continuous spectrum.

FIG. 11. Density of particles vs time for paired nucleation starting from z
density. The parameters areG516, D50.5, b50.25 («51). The solid
circles are numerical simulation results; the upper dotted line is the e
steady state. The lower dotted curve isr0(120.5 exp(24bGt)). The expo-
nent chosen for the fit is the lowest in the continuum. No discrete eigen
ues are found for«51.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE II. Summary of results for steady-state densities and relaxation rates obtained by various meth

Unpaired nucleation Paired nucleation

b→` b→0

r0 Relaxation rate r0 Relaxation rate

Mesoscopic }(Q/D)1/3 }(DQ2)1/3 }(bG/D)1/2 }(b/GD)1/2,bG
Hierarchy (Q/16D)1/3 0.219/(DQ2)1/3 (bG/2D)1/2 (b/32DG)1/2

Exact 0.9186(Q/16D)1/3 0.2138/(DQ2)1/3 (bG/2D)1/2 4bG
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The first step does not affect the correlation function or tim
reversal invariance. The second step directly changes
correlation function for separations smaller thanb. Thus, for
diffusion-limited annihilation with paired nucleation, as th
parameter for« that measures the distance between ne
nucleated pairs tends to 0, the two-point function in t
steady state is appreciably different from 1 only in a reg
whose width is proportional tob.

Results obtained for the steady-state density and re
ation rate are summarized in Table II. For the evaluation
time scales, the case of paired nucleation is more com
cated. The different approaches indicate the occurrenc
multiple length and time scales. The mesoscopic approa30

leads to a characteristic time for approach to equilibri
proportional to (bG)21, and a distinct mean lifetime of a
particle proportional to (b/DG)1/2. These two time scale
were identified as corresponding, respectively, to recomb
tion ~two particles created a distanceb apart collide and
annihilate! and to nonrecombinant annihilation~collision be-
tween two particles nucleated at different times!. Unpaired
annihilation is less frequent than paired annihilation, but b
time scales are important in the dynamics of the system30

The exact approach leads to the former time scale as
upper bound of a continuum of scales. The trunca
reaction–diffusion hierarchy leads to the latter time sc
under the assumption of exponential decay, which may
be valid. Understanding the time scales in the case of pa
nucleation requires further research.

The theoretical approach based on truncation of a h
archy of distribution functions thus permits the calculation
steady-state densities and correlation functions that are in
agreement with simulations. It gives the exact result for
steady-state density in the limit«→0, where the statistica
distribution of particles is close to random. As pointed out
van Kampen,2 an approach using a truncation can be ma
systematic if it is based on an expansion in a small par
eter. However, his suggestion that the small parameter be
density of particles is not applicable to the case of unpa
nucleation of point particles because there is no other qu
tity with the dimension of length, i.e., nothing for the dens
to be small compared to. The exact approach based on
function r (x,t) sidesteps these difficulties by providing
direct method to calculate the density of particles. For a
value of «, the density in the steady state and its tim
dependent statistics can be exactly calculated. However
method has not yet been extended to exact calculation o
full distribution of interparticle distances.
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APPENDIX A: STEADY STATE SOLUTION
OF TRUNCATED HIERARCHY

In this Appendix we find the steady-state solutions
~40! and ~41!.

1. Unpaired nucleation

We solve~41! with the left-hand side set to zero. Fourie
transforming the quasilinear equation according to

ĝn5
2

L1/2E
0

L

dy g0~y!cos
2pny

L
, ~A1!

leads fornÞ0 to

ĝn5

2
2G

L1/2r0
2

8Dp2n2

L2 1
4G

r0

, ~A2!

where Eq.~28! has been used. Normalization setsĝ05L1/2.
Fourier inversion according to

g~y!5
1

L1/2 (
n52`

`

ĝn cos
2pny

L
, ~A3!

can be done by separating out then50 contribution explic-
itly and changing the resulting sum to an integral~valid as
L→`!

g0~y!512
G

pr0
2 E

0

`

dq
cosqy

q21
2G

Dr0

512
1

4 S 2G

Dr0
3D 1/2

e2y(2G/Dr0)1/2
. ~A4!
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The requirement~26! must also hold in the steady state. T
gether with~A4!, this leads to Eqs.~42! and ~43!.

2. Paired nucleation

We now solve Eq.~44!, where the steady-state densi
r0 is related to the derivative ofg0(y) asy→0

G52Dg08~01!r0
2 . ~A5!

Thed-function contribution in the last term of~44! leads to a
discontinuity in the derivativeg08(y) at y5b. This leads to
the search for a solution of the form

g0~y!5H 11~S21!e2(2G/Dr0)1/2y 0<y,b;

11Pe2(2G/Dr0)1/2y1Se(2G/Dr0)1/2y y>b.
~A6!

The constantS is determined from the condition~A5!

122S5S G

8Dr0
3D 1/2

. ~A7!

Now, the constantP is determined by enforcing continuity o
the solutiong0(y) at y5b

P5S~12e2(2G/Dr0)1/2b!21. ~A8!

The discontinuity in the derivativeg08(y) at y5b is

g08~b1!2g08~b2!52
G

2Dr0
2 . ~A9!

Using ~A6! to evaluate the left-hand side of~A9! and rear-
ranging gives an implicit expression for the steady-state d
sity

S G

8D D 1/2

5S S G

8D D 1/2

2r0
3/2De(2G/Dr0)1/2b, ~A10!

or, rearranging again

~br0!3/25
s2

8
~12e2s2/2(br0)1/2

!, ~A11!

wheres is defined by

s5S 8b3G

D D 1/4

[&«3/4. ~A12!

While we cannot invert~A11! explicitly for the steady-
state density, we can examine the limits in the dimension
parameters. In the limit s@1, corresponding to large initia
separation, we find

~br0!3/2→ s2

8
, ~A13!

sor0
3→G/8D, as obtained in~42! for the unpaired nucleation

case. Morevover,S→0 andg(y)→12e24r0y as in ~43!.
The limit s→0 corresponds to small initial separatio

Then ~A11! reduces to

br05
s2

4 S 12
1

4
s1O~s2! D . ~A14!

Note thats→0 corresponds tobr0→0. Expanding in pow-
ers ofs, we find
Downloaded 26 Jun 2001 to 129.11.159.162. Redistribution subject to A
n-

ss

r05S bG

2D D 1/2S 12
1

4
s1O~s2! D ,

~A15!

S52 1
2 s211 5

16 1O~s!, and P5 1
2 s1O~s2!.

The correlation functiong0 can be expanded as

g0~y!5H y

b S 11
1

2
s D1O~s2! 0<y,b;

11 1
2 se2sy/b1O~s2! y>b.

~A16!

These results ass→0 are reported in Eqs.~45! and ~46!.

APPENDIX B: RELAXATION TO THE STEADY STATE

Here, we detail the calculation of approach to the stea
state in the truncated hierarchy approach.

1. Unpaired nucleation

It is convenient to introduce the symbols

x5~DG2!1/3, g5~D2G!1/3. ~B1!

The linearized perturbation equations~49! and ~50! in the
unpaired case are

]

]t
dr~ t !52x@dg8~01,t !18dr~ t !#, ~B2!

]

]t
dg~y,t !52D

]2

]y2 dg~y,t !22K~y!dg~y,t !

28xdg~y,t !216g@12g0
u~y!#dr~ t !, ~B3!

where the specific form~42! has been implemented. As in
tial conditions, we choose

dg~y,t50!50, ~B4!

and an arbitrarydr(0). Note that having implemented th
condition ~19! on the steady-state solution implies th
dĝn50(t)50.

The solution of Eq.~B2! is

dr~ t !5e28xtdr~0!2xE
0

t

dt e28x(t2t)dg8~01,t!.

~B5!

Transforming~B3! according to~A1! gives, fornÞ0

]

]t
dĝn~ t !52

8Dp2n2

L2 dĝn~ t !28xdĝn~ t !

2
8D

L1/2dg8~01,t !116gĝndr~ t !. ~B6!

We can formally solve this equation as well, to obtain

dĝn~ t !5E
0

t

dt e28(@Dp2n2/L2# 1x)(t2t)

3F2
8D

L1/2dg8~01,t!116gĝndr~t!G , ~B7!

and hence its inverse Fourier transform
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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dg~y,t !52E
0

t

dt K~y,t2t!dg8~01,t!

18E
0

t

dt G~y,t2t!dr~t!. ~B8!

We have introduced the following functions~and taken the
limit L→`!:

K~y,t !5
8D

L
e28xt (

n52`

1`

8 cos
2pny

L
e2 ~8Dp2n2/L2! t

5
8D

~2pDt !1/2e28xte2 ~y2/2Dt !, ~B9!

G~y,t !5
2g

L1/2e28xt (
n52`

1`

8 cos
2pny

L
e2 ~8Dp2n2/L2! tĝn

52
8g2

p
e28xtE

2`

`

dq e22Dq2t
1

8x12Dq2 cosqy,

~B10!

where the prime on the sums indicates omission of thn
50 term and we have used Eq.~A2!.

Since the unknowns appear on both sides of~B5! and
~B8!, these are only formal solutions. To proceed,
Laplace transform them~indicated by a tilde! and solve the
resulting set self-consistently. The limit~30! must be handled
carefully and not implemented prematurely. We find

dr̃~s!5
1

8x~u11!
~dr~0!2xdg̃8~01,s!!, ~B11!

dg̃~y,s!52K̃~y,s!dg̃8~01,s!18G̃~y,s!dr̃~s!. ~B12!

From these two equations we can obtain an expression
dg̃8(01,s) as follows. First, sety50 in ~B12!. Since
g(0,t)50 and sinceg0(0)50, it follows from Eq.~48! that
dg(0,t)50 for all t and thereforedg̃(0,s)50 for all s. Thus,
we find

052K̃~0,s!dg̃8~01,s!18G̃~0,s!dr̃~s!. ~B13!

Substitution of~B11! into this result immediately leads to

xdg̃8~01,s!5
dr~0!G̃~0,s!

~u11!K̃~0,s!1G̃~0,s!
, ~B14!

where we have setu[s/8x. This, together with Eqs.~B11!
and ~B12!, constitutes a complete solution of the Lapla
transform of the problem. The indicated transforms can
calculated explicitly

K̃~0,s!5
2~D/G!1/3

Au11
, ~B15!

G̃~0,s!52
~D/G!1/3

4u S 12
1

Au11
D , ~B16!

and one readily obtains
Downloaded 26 Jun 2001 to 129.11.159.162. Redistribution subject to A
or

e

dr̃~s!5
dr~0!

x S u

12A11u18u~11u!
D . ~B17!

It is possible to Laplace invert these expressio
exactly.39 In particular, Eq.~B17! can be rewritten as

dr̃~s!5
dr~0!

x S A1

Au112y1

1
A2

Au112y2

1
A3

Au112y3
D ,

~B18!

where

A15
51A5

40
A25

52A5

40
A352

1

4
~B19!

and

y15
1

4
~A521! y252

1

4
~A511! y352

1

2
. ~B20!

The inversion

L21S 1

As1A2B
D 5e2AtS 1

Apt
1BeB2t erfc~2BAt !D

~B21!

can then be applied to obtain

dr~ t !58dr~0!e28xt(
i

Aiyie
8xyi

2t erfc~2yiA8xt ! .

~B22!

It is noteworthy that this solution isexactwithin the trunca-
tion approximations for the model; that is, it represents
full time-dependent solution for the model.

Asymptotic analysis of the exact result yields pure exp
nential decay as indicated in Eqs.~51! and ~52!, with

a5~51A5!x57.236 . . .x . ~B23!

The proportionality ofdg̃ anddr̃ clearly leads to the sam
decay rate fordg(y,t) as fordr(t).

2. Paired nucleation

Here, it is convenient to introduce the symbols

V5
4G

r0
, u5Gb. ~B24!

The linearized perturbation equations~49! and ~50! in
the paired case are

]

]t
dr~ t !524Dr0

2dg8~01,t !2Vdr~ t !, ~B25!

]

]t
dg~y,t !52D

]2

]y2 dg~y,t !22K~y!dg~y,t !2Vdg~y,t !

2
4G

r0
@12g0

p~y!#dr~ t !2
2G

r0
3 d~y2b!dr~ t !.

~B26!

With the same initial condition as in the unpaired ca
the solution of Eq.~B25! is formally given by
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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dr~ t !5e2Vtdr~0!24Dr0
2E

0

t

dt e2V(t2t)dg8~01,t!.

~B27!

Transforming~B26! according to~A1! gives fornÞ0

]

]t
dĝn~ t !52

8Dp2n2

L2 dĝn~ t !2Vdĝn~ t !2
8D

L1/2dg8~01,t !

1
V

r0
ĝndr~ t !2

4G

r0
3L1/2cosS 2pnb

L D dr~ t !. ~B28!

We can formally solve this equation as well, to obtain

dĝn~ t !5E
0

t

dt e2(@8Dp2n2/L2# 1V)(t2t) H 2
8D

L1/2dg8~01,t!

1F V

r0
ĝn2

4G

r0
3L1/2cosS 2pnb

L D Gdr~t!J ,

and hence its inverse Fourier transform~notice that
dgn50(t)50 for all t)

dg~y,t !52E
0

t

dt K~y,t2t!dg8~01,t!1E
0

t

dt G~y,t2t!

3dr~t!2
4G

r0
3L1/2E

0

t

dt H~y,t2t!dr~t!. ~B29!

We have introduced the following functions:

K~y,t !5
8D

L
e2Vt (

n52`

1`

8 cos
2pny

L
e2 ~8Dp2n2/L2! t

5
8D

~2pDt !1/2e2Vte2 ~y2/2Dt !, ~B30!

G~y,t !5
V

r0L1/2e2Vt (
n52`

1`

8 cos
2pny

L
e2 ~8Dp2n2/L2! tĝn ,

~B31!

H~y,t !5
1

L1/2e2Vt (
n52`

1`

8 cos
2pny

L
cos

2pnb

L

3e2 ~8Dp2n2/L2! t. ~B32!

We Laplace transform~B27! and ~B29! and solve the
resulting set self-consistently, to obtain

dr̃~s!5
1

s1V
dr~0!24Dr0

2 dg̃8~01,s!

s1V
,

dg̃~y,s!52K̃~y,s!dg̃8~01,s!1G̃~y,s!dr̃~s!

2
4G

r0
3L1/2H̃~y,s!dr̃~s!,

from which in turn we find
Downloaded 26 Jun 2001 to 129.11.159.162. Redistribution subject to A
dg̃~y,s!52K̃~y,s!dg̃8~01,s!1F G̃~y,s!2
4G

r0
3L1/2H̃~y,s!G

3F 1

s1V
dr~0!24Dr0

2 dg̃8~01,s!

s1V G . ~B33!

We are interested in obtainingdg̃8(01,s). This can
readily be done by evaluating the previous equation ay
50, to obtain@notice that we have chosendg(y50,t)50 for
all t#

052K̃~0,s!dg̃8~01,s!1F G̃~0,s!2
4G

r0
3L1/2H̃~0,s!G

3F 1

s1V
dr~0!24Dr0

2 dg̃8~01,s!

s1V G . ~B34!

The previously introduced functions evaluated at the o
gin become

K~0,t !5
8D

~2pDt !1/2e2Vt, ~B35!

G~0,t !5
V

r0L1/2e2Vt (
n52`

1`

8 e2 ~8Dp2n2/L2! tĝn , ~B36!

H~0,t !5
1

L1/2e2Vt (
n52`

1`

8 cos
2pnb

L
e2 ~8Dp2n2/L2! t.

~B37!

We are interested in obtaining the Laplace transform of th
functions. It is easy to obtain

K̃~0,s!5
2~D/G!1/3

As/V11
, ~B38!

H~0,t !5
L1/2

p
e2VtE

0

1`

dqe22Dq2t cosqb, ~B39!

so that

4G

r0
3L1/2H~0,t !5

2G

r0
3A2pDt

e2Vte2b2/(8Dt), ~B40!

4G

r0
3L1/2H̃~0,s!5

2G

r0
3A2D

1

As1V
e2bA~s1V!/2D. ~B41!

The Fourier components for the two-point correlati
function associated with Eq.~A6! are

ĝn5
2

L1/2

A2G/~Dr0!

2G

Dr0
1

4p2n2

L2

3F ~2S21!22SebA2G/(Dr0) cos
2pnb

L
G . ~B42!

This form in turn leads to the Laplace transform ofG(0,t)
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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G̃~0,s!5
V

p
A 2G

Dr0
32~2S21!

3E
0

1`

dq
1

~q212G/~Dr0!!~s1V12Dq2!

2
V

p
A 2G

Dr0
32SebA2G/(Dr0)

32E
0

1`

dq
cosqb

~q212G/~Dr0!!~s1V12Dq2!
.

~B43!

It is now a straightforward matter to~1! collect the vari-
ous Laplace transform expressions to solve fordg̃8(01,s)
using Eq.~B34!; ~2! substitute this result into Eq.~B11!, and
explore the poles of the denominator of the resultingdr̃(s)
in the limit e→0. The procedure is tedious but leads to t
inverse time scale~54!. The proportionality ofdg̃ and dr̃
clearly leads to the same decay rate fordg(y,t) as fordr(t).
We do note that it is not clear from this procedure that
relaxation process is actually exponential in time. If itis
exponential~and there is reason to question this from t
results of the exact and mesoscopic procedures!, then it is
necessary to perform the inverse Laplace transform m
carefully. This is possible, but beyond the scope of this
per.

APPENDIX C: THE FUNCTION r „x ,t … AND ITS
DERIVATIVES

We first calculate the derivative ofr (x,t) with respect to
x by considering the intervals shown in Fig. 12.

~i! Let Pe0(x,Dx,t) be the probability that there is a
even number of particles in (0,x) and no particle in
(x,x1Dx) at time t.

~ii ! Let Pe1(x,Dx,t) be the probability that there is a
even number of particles in (0,x) and one particle in
(x,x1Dx) at time t.

~iii ! Let Po1(x,Dx,t) be the probability that there is a
odd number of particles in (0,x) and one particle in
(x,x1Dx) at time t.

The functionr (x,t) defined in Eq.~55! can be expresse
in terms of these quantities as follows:

r ~x1Dx,t !5Pe0~x,Dx,t !1Po1~x,Dx,t !1O~Dx2!

~C1!

r ~x,t !5Pe0~x,Dx,t !1Pe1~x,Dx,t !1O~Dx2!.

FIG. 12. The intervals (0,x) and (x,x1Dx).
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Thus,

r ~x1Dx,t !2r ~x,t !

5Po1~x,Dx,t !2Pe1~x,Dx,t !1O~Dx2!. ~C2!

In particular, by choosingx50,

r ~Dx,t !2r ~0,t !502Pe1~0,Dx,t !1O~Dx2!

52Dxr~ t !1O~Dx2!. ~C3!

Thus, the densityr(t) is given by

r~ t !52
]

]x
r ~x,t !U

x501

, ~C4!

which proves Eq.~56!.
Next, we consider the intervals (0,x2Dx), (x2Dx,x),

and (x,x1Dx). Let Pe01(x,Dx,t) be the probability that
there is an even number of particles in (0,x2Dx), no par-
ticle in (x2Dx,x), and one particle in (x,x1Dx) at time t.
Let Pe00(x,Dx,t), Pe10(x,Dx,t), Pe11(x,Dx,t),
Po00(x,Dx,t), Po01(x,Dx,t), Po10(x,Dx,t), and
Po11(x,Dx,t) be defined in the obvious way. The appropria
intervals are shown in Fig. 13.

Becauseg(0,t)50 for all t.0, the probability that there
are two particles in (x2Dx,x1Dx) is proportional toDx3

asDx→0. Thus,

r ~x1Dx,t !1r ~x2Dx,t !22r ~x,t !

5Pe10~x,Dx,t !2Po10~x,Dx,t !2Pe01~x,Dx,t !

1Po01~x,Dx,t !1O~Dx3!. ~C5!

We derive the contribution due to diffusion of particle
to the partial differential equations~57! and~59! for the evo-
lution of r (x,t) by considering the probability that a partic
at x2Dx at time t diffuses out of the region (0,x) before
time t1Dt, and the probability that a particle atx1Dx at
time t diffuses out of the region (0,x) before timet1Dt.

The probability that a particle, atx1Dx at time t, is in
(0,x) at time t1Dt is given by27,32

Q~Dx,Dt !5~4pD !2 1/2E
Dx

`

dx exp~2x2/4DDt !

5
1

2
erfcS Dx

~4DDt !1/2D . ~C6!

FIG. 13. Particle movements contributing to the change inr (x,t). The
effect in each case depends on whether the number of particles inx
2Dx) is odd or even.
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Let

Re01~x,Dx,t !5
]

]Dx
Pe01~x,Dx,t !. ~C7!

As Dx→0, this quantity is the probability density for findin
a particle atx1Dx at time t, given that the number of par
ticles in (0,x) is even. Similarly, let
.

t.

Downloaded 26 Jun 2001 to 129.11.159.162. Redistribution subject to A
Re10~x,Dx,t !5
]

]Dx
Pe10~x,Dx,t !,

~C8!
Ro01~x,Dx,t !5

]

]Dx
Po01~x,Dx,t !,

and so on.
The time derivative ofr (x,t)

]

]t
r ~x,t !5 lim

Dt→0

1

Dt
~r ~x,t1Dt !2r ~x,t !!, ~C9!

is found using Eq.~C5!, integrating overDx, and taking the
limit Dt→0
r ~x,t1Dt !2r ~x,t !52E
0

`

dDx Q~Dx,Dt !~Re10~x,Dx,t !2Ro10~x,Dx,t !!

12E
0

`

dDx Q~Dx,Dt !~2Re01~x,Dx,t !1Ro01~x,Dx,t !!

52E
0

`

dDx Q~Dx,Dt !
]

]Dx
~Pe10~x,Dx,t !2Pe10~x,Dx,t !2Pe01~x,Dx,t !1Po01~x,Dx,t !!

52E
0

`

dDx Q~Dx,Dt !
]

]Dx S ]2

]x2 r ~x,t !Dx21O~Dx3! D
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0

`

dDx erfcS Dx

~4DDt !1/2D S ]2

]x2 r ~x,t !Dx1O~Dx2! D52D
]2

]x2 r ~x,t !Dt1O~Dt2!. ~C10!
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